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PROBLEM 1 

Score: a+b+c+d+e=5+4+4+5+5=23 

 

A 2-dimensional lattice is in equilibrium with a heath bath at temperature 𝑇. The lattice has 

𝑁 × 𝑁 lattice positions (see figure). On this lattice there are two distinguishable particles 

𝐴 and 𝐵 that can freely move over the lattice positions. In the situation that the particles 

are at the same lattice position the energy of the system of two particles is – 𝜀; in the 

situation that the particles are at different lattice positions this energy is zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) How many possibilities (microstates) are there to place the two particles on the lattice? 

How many of these microstates have energy −𝜀 and how many have energy zero. 

b) Give the general expression of the partition function 𝑍 when you sum over all different 

energies of a system. Use this to show that the partition function 𝑍 for the system of 

the two particles on the lattice is: 

 

𝑍 = 𝑁2(𝑁2 − 1 + 𝑒𝛽 ) 

 

c) Use this partition function to calculate the internal energy 𝑈 of the system of the two 

particles on the lattice. 

d) Calculate the probability 𝑃𝑠𝑎𝑚𝑒 that the particles are at the same lattice position. 

e) Make a sketch of 𝑃𝑠𝑎𝑚𝑒 as a function of temperature 𝑇. Clearly indicate the values of 

𝑃𝑠𝑎𝑚𝑒 at 𝑇 = 0 and 𝑇 = ∞. 
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PROBLEM 2 

Score: a+b+c+d =6+6+5+5=22 

 

Consider a 3D metallic crystal of hydrogen atoms, suppose that each atom can be in one of 

the following states: 

 

State 𝑁𝑒 Energy 

Ground 1 −∆ 

Positive ion 0 
−
1

2
∆ 

Negative ion 2 1

2
∆ 

Excited 1 ∆ 

 

with 𝑁𝑒 the number of electrons of the atom. 

 

This crystal is in contact with heat bath at temperature T and an electron reservoir that can 

be characterized with a chemical potential 𝜇. Each atom can be considered as a system that 

has four states. 

 

a) Show that the grand partition function of one of these atoms can be written as: 

 

𝓏 = 2𝑒𝛽𝜇 (cosh(𝛽∆) + cosh𝛽 (
1

2
∆ − 𝜇)) 

 

b) Show that when the mean number 〈𝑁𝑒〉 of electrons of an atom is equal to 1 then we 

have 𝜇 =
1

2
∆. 

c) Calculate the internal energy 𝑈 of a system of 𝑁 of these hydrogen atoms when 𝜇 =
1

2
∆. Express your answer using sinh(𝛽∆) and cosh(𝛽∆). Show that 

𝑈

𝑁
→ 0 in the high 

temperature limit and that 
𝑈

𝑁
→ −∆ in the low temperature limit.  

d) Explain how you would calculate the entropy of a system of 𝑁 of these hydrogen atoms 

under the condition that 𝜇 =
1

2
∆. Meaning, describe in words and formulas which steps 

you would take. You do not have to simplify the formulas. 

 

  



PROBLEM 3 

Score: a+b+c+d=6+6+5+5=22 

 

The Berthelot equation of state is given by: 

 

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−
𝑎

𝑇𝑉2
 

 

in which 𝑃, 𝑉, 𝑇 are the pressure, the molar volume and the temperature of the gas, 

respectively. The constant 𝑎 controls the attractive molecular interactions and the constant 

𝑏 corrects for the volume of the gas molecules. 

 

a) Show that for a gas described by the Berthelot equation (a Berthelot gas), the critical 

temperature, pressure and volume are given by: 

 

(𝑇𝑐, 𝑃𝑐 , 𝑉𝑐) = (
2

3
√
2

3

𝑎

𝑏𝑅
,
1

12𝑏
√
2

3

𝑎𝑅

𝑏
, 3𝑏) 

 

b) Calculate the second virial coefficient 𝐵(𝑇) of the Berthelot gas. 

c) Calculate the Boyle temperature 𝑇𝑏 of the Berthelot gas.  

 

A crude model for the intermolecular potential is the square well potential. Suppose that 

for a certain real gas (not necessarily a Berthelot gas) we have the following square well 

potential 𝑣𝜅,𝑅, (𝑟) describing the interaction between two molecules as a function of their 

separation distance 𝑟: 
 

𝑣(𝑟) = ∞;          0 < 𝑟 ≤
𝑅

𝜅
 

𝑣(𝑟) = −𝜀;       
𝑅

𝜅
< 𝑟 ≤ 𝑅 

𝑣(𝑟) = 0;           𝑟 > 𝑅 

 

with 𝜅 a dimensionless constant such that 𝜅 > 1, 𝜀 has the units of energy and the radius 

𝑅 is expressed in units of length.  

 

d) Calculate the second virial coefficient 𝐵(𝑇) (per mole) for a real gas with such a square 

well potential  𝑣𝜅,𝑅, (𝑟). Express your answer in terms of 𝑅, 𝜀, 𝜅 and 𝛽. 

 

  



PROBLEM 4 

Score: a+b+c+d =7+6+5+5=23 

 

Consider a one-atom layer thick square (with sides of length 𝐿) of metallic atoms. The 

square consists of 𝑁 atoms of which each atom contributes exactly two electrons to the 

total amount of conduction electrons. These conduction electrons can be considered as a 

2D ideal gas of fermions with spin 
1

2
 enclosed in a square with area 𝐴 = 𝐿2. 

 

a) Show that number of states Γ(𝐸) with energy smaller than 𝐸 for this 2D gas of fermions 

is proportional to 𝐸: 

Γ(𝐸) =
𝐴𝐸

𝜎
 

 

with 𝜎 a constant. Give an expression for 𝜎 in terms of fundamental constants. 

 

Use the expression for Γ(𝐸) to show that the density of states 𝑔(𝐸)𝑑𝐸 for this 2D ideal 

gas of electrons is independent of energy and can be written as: 

 

𝑔(𝐸)𝑑𝐸 =
𝐴𝑑𝐸

𝜎
 

 

We now cool the square of metallic atoms to temperature 𝑇 = 0. 

 

b) Calculate the Fermi energy 𝐸𝐹 for this 2D ideal gas of electrons. Express your answer 

in 𝑁, 𝐴 and 𝜎. 

c) Show that at 𝑇 = 0 the internal energy of this gas is given by 𝑈 = 𝑁𝐸𝐹 . 

d) Calculate the 2D pressure (surface tension) of this gas at 𝑇 = 0. 

 

 

 

  



Solutions 

 

PROBLEM 1 

a)  

Total number of microstates: 𝑁 × 𝑁 possibilities for the first particle times 𝑁 × 𝑁 

possibilities for the second particle gives 𝑁4 microstates. The number of microstates with 

energy 𝐸 = −𝜀 is equal to the number of lattice positions: 𝑁2. The number of microstates 

that have energy 𝐸 = 0 is 𝑁4 −𝑁2 = 𝑁2(𝑁2 − 1). 
 

b) 

General expression for the partition function: 

 

𝑍 =∑𝑒−𝛽𝐸𝑟

𝑟

 

 

where the summation is over all microstates 𝑟 or 

 

𝑍 =∑𝑔(𝐸𝑟)𝑒
−𝛽𝐸𝑟

𝐸𝑟

 

 

where the summation is over all different energies 𝐸𝑟 and 𝑔(𝐸𝑟) is the degeneracy of the 

energy 𝐸𝑟 (number of microstates with that energy). 

 

For the system of the two particles on the lattice: 

 

𝑍 = 𝑁2𝑒−𝛽(− ) + 𝑁2(𝑁2 − 1)𝑒−𝛽0 = 𝑁2(𝑁2 − 1)+𝑁2𝑒𝛽 = 𝑁2(𝑁2 − 1 + 𝑒𝛽 ) 

 

c) 

We use 𝑈 = −
𝜕 ln𝑍

𝜕𝛽
 and find, 

 

𝑈 = −
𝑁2𝜀𝑒𝛽

𝑁2(𝑁2 − 1)+𝑁2𝑒𝛽
=

−𝜀𝑒𝛽

(𝑁2 − 1) + 𝑒𝛽
 

d)  

 

𝑃𝑠𝑎𝑚𝑒 =
𝑁2𝑒𝛽

𝑍
=

𝑁2𝑒𝛽

𝑁2(𝑁2 − 1)+𝑁2𝑒𝛽
=

𝑒𝛽

(𝑁2 − 1) + 𝑒𝛽
 

 

e)  

If 𝑇 → 0 then 𝛽 → ∞ and thus:  

𝑃𝑠𝑎𝑚𝑒 =
𝑒𝛽

(𝑁2 − 1) + 𝑒𝛽
=

1

(𝑁2 − 1)𝑒−𝛽 + 1 𝛽→∞
→   1 



 

If 𝑇 → ∞ then 𝛽 → 0 and thus: 

 

𝑃𝑠𝑎𝑚𝑒 =
𝑒𝛽

(𝑁2 − 1) + 𝑒𝛽 𝛽→∞
→   

1

(𝑁2 − 1) + 1
=
1

𝑁2
 

  



PROBLEM 2 

a) 

𝓏 =∑𝑒𝛽(𝑁𝑖𝜇−𝐸𝑖)

𝑖

= 𝑒𝛽(𝜇+∆) + 𝑒𝛽
1
2
∆ + 𝑒𝛽(2𝜇−

1
2
∆) + 𝑒𝛽(𝜇−∆)

= 𝑒𝛽𝜇(𝑒𝛽∆ + 𝑒−𝛽∆) + 𝑒𝛽𝜇 (𝑒𝛽(
1
2
∆−𝜇) + 𝑒−𝛽(

1
2
∆−𝜇))

= 2𝑒𝛽𝜇 cosh(𝛽∆) + 2𝑒𝛽𝜇 cosh (
1

2
∆ − 𝜇)

= 2𝑒𝛽𝜇 (cosh(𝛽∆) + cosh𝛽 (
1

2
∆ − 𝜇)) 

 

in which the four terms in the sum represent the ground, positive ion, negative ion and 

excited state, respectively. 

 

b) 

The mean number of electrons 〈𝑁𝑒〉 follows from, 

 

〈𝑁𝑒〉 =∑𝑃𝑖𝑁𝑖
𝑖

=
𝑒𝛽(𝜇+∆)

𝓏
× 1 +

𝑒𝛽
1
2
∆

𝓏
× 0 +

𝑒𝛽(2𝜇−
1
2
∆)

𝓏
× 2 +

𝑒𝛽(𝜇−∆)

𝓏
× 1 =

=
𝑒𝛽(𝜇+∆) + 2𝑒𝛽(2𝜇−

1
2
∆) + 𝑒𝛽(𝜇−∆)

𝑒𝛽(𝜇+∆) + 𝑒𝛽
1
2
∆ + 𝑒𝛽(2𝜇−

1
2
∆) + 𝑒𝛽(𝜇−∆)

 

 

Equating the last expression to 1. 

 

〈𝑁𝑒〉 = 1 ⇒𝑒
𝛽(𝜇+∆) + 2𝑒𝛽(2𝜇−

1
2
∆) + 𝑒𝛽(𝜇−∆) = 𝑒𝛽(𝜇+∆) + 𝑒𝛽

1
2
∆ + 𝑒𝛽(2𝜇−

1
2
𝛿) + 𝑒𝛽(𝜇−∆)

⇒ 𝑒𝛽(2𝜇−
1
2
∆) = 𝑒𝛽

1
2
∆ ⇒ 𝑒2𝛽𝜇 = 𝑒𝛽∆ ⇒ 𝜇 =

1

2
∆ 

 

The mean number of electrons can be further written (not necessary) as: 

 

〈𝑁𝑒〉 =
𝑒𝛽𝜇 (𝑒𝛽∆ + 𝑒−𝛽∆ + 2𝑒𝛽(𝜇−

1
2
∆))

2𝑒𝛽𝜇 (cosh(𝛽∆) + cosh𝛽 (𝜇 −
1
2∆))

=
2𝑒𝛽𝜇 (cosh(𝛽∆) + 𝑒𝛽(𝜇−

1
2
∆))

2𝑒𝛽𝜇 (cosh(𝛽∆) + cosh𝛽 (𝜇 −
1
2∆))

=
(cosh(𝛽∆) + 𝑒𝛽(𝜇−

1
2
∆))

(cosh(𝛽∆) + cosh𝛽 (𝜇 −
1
2∆))

 

 

Equating this to 1 gives:  

 



𝑒𝛽(𝜇−
1
2
∆) =

1

2
𝑒𝛽(𝜇−

1
2
∆) +

1

2
𝑒−𝛽(𝜇−

1
2
∆)⇒𝑒𝛽(𝜇−

1
2
∆) = 𝑒−𝛽(𝜇−

1
2
∆)⇒ 𝜇 −

1

2
∆

= −(𝜇 −
1

2
∆) ⇒ 𝜇 =

1

2
∆ 

 

c)  

The internal energy for a system of 𝑁 hydrogen atoms is 

 

𝑈 = 𝑁〈𝐸〉 
with 

〈𝐸〉 =∑𝑃𝑖𝐸𝑖
𝑖

=
𝑒𝛽(𝜇+∆)

𝒵
× (−∆) +

𝑒𝛽
1
2
∆

𝒵
× (−

1

2
∆) +

𝑒𝛽(2𝜇−
1
2
∆)

𝒵
× (
1

2
∆)

+
𝑒𝛽(𝜇−∆)

𝓏
× (∆)

=
−∆

𝒵
[𝑒𝛽𝜇(𝑒𝛽∆ − 𝑒−𝛽∆) + 𝑒𝛽𝜇 (

𝑒𝛽(
1
2
∆−𝜇) − 𝑒−𝛽(

1
2
∆−𝜇)

2
)]

=
−∆

𝒵
[2𝑒𝛽𝜇 sinh(𝛽∆) + 𝑒𝛽𝜇 sinh(𝛽 (

1

2
∆ − 𝜇))] 

 

Which can be further simplified to, 

 

〈𝐸〉 = −∆

2𝑒𝛽𝜇 sinh(𝛽∆) + 𝑒𝛽𝜇 sinh(𝛽 (
1
2
∆ − 𝜇))

2𝑒𝛽𝜇 (cosh(𝛽∆) + cosh𝛽 (
1
2∆ − 𝜇))

=

= −∆

sinh(𝛽∆) +
1
2 sinh (𝛽 (

1
2 ∆ − 𝜇))

(cosh(𝛽∆) + cosh𝛽 (
1
2
∆ − 𝜇))

 

 

In case we have 𝜇 =
1

2
∆ we have, 

〈𝐸〉 = −∆
sinh(𝛽∆)

(cosh(𝛽∆) + 1)
 

 

It is also OK to do the substitution 𝜇 =
1

2
∆ directly then we have  

 

〈𝐸〉 =∑𝑃𝑖𝐸𝑖
𝑖

=
𝑒
3
2
𝛽∆

𝒵
× (−∆) +

𝑒
1
2
𝛽∆

𝒵
× (−

1

2
∆) +

𝑒
1
2
𝛽∆

𝒵
× (
1

2
∆) +

𝑒−
1
2
𝛽∆

𝒵
(∆) 

 

With  

𝒵 = 2𝑒𝛽𝜇(cosh(𝛽∆) + cosh𝛽(0)) = 2𝑒
1
2
𝛽∆(cosh(𝛽∆) + 1) 



This becomes, 

 

〈𝐸〉 =
𝑒𝛽∆

2(cosh(𝛽∆) + 1)
× (−∆) +

𝑒−𝛽∆

2(cosh(𝛽∆) + 1)
(∆) = 〈𝐸〉 = −∆

sinh(𝛽∆)

(cosh(𝛽∆) + 1)
 

 

 

And thus, 

𝑈 = 𝑁〈𝐸〉 = −𝑁∆
sinh(𝛽∆)

(cosh(𝛽∆) + 1)
 

 

In the high temperature limit, we have: 

 

〈𝐸〉 = −∆
sinh(𝛽∆)

(cosh(𝛽∆) + 1) 𝛽→0
→  = −∆

0

(1 + 1)
= 0 

 

In the low temperature limit we have: 

 

〈𝐸〉 = −∆
sinh(𝛽∆)

(cosh(𝛽∆) + 1)
= −∆

tanh(𝛽∆)

(1 +
1

cosh(𝛽∆)
)
𝛽→∞
→   = −∆

1

(1 + 0)
= −∆ 

d) 

Use Blundell and Blundell equation 22.23, and calculate the entropy 𝑆1 for 1 atom, 

 

𝑆1 =
〈𝐸〉 − 𝜇〈𝑁𝑒〉 + 𝑘𝑇 ln 𝓏

𝑇
=
−∆

sinh(𝛽∆)
(cosh(𝛽∆) + 1)

− 𝜇 + 𝑘𝑇 ln (2𝑒𝛽𝜇(cosh(𝛽∆) + 1))

𝑇

=

−∆
sinh(𝛽∆)

(cosh(𝛽∆) + 1)
−
1
2∆ + 𝑘𝑇 ln (2𝑒

1
2
𝛽∆ (cosh(𝛽∆) + 1))

𝑇
 

 

For 𝑁 atoms we have 𝑆 = 𝑁𝑆1 
  



PROBLEM 3 

a)  

The critical point is found when the isotherm of the gas has an infliction point, thus as, 

 

(
𝜕𝑃

𝜕𝑉
)
𝑇
= (
𝜕2𝑃

𝜕𝑉2
)
𝑇

= 0 

 

This gives (together with the Berthelot equation of state) three equations with three 

unknowns namely: 

 

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−
𝑎

𝑇𝑉2
         eq(1) 

 

 

(
𝜕𝑃

𝜕𝑉
)
𝑇
=

−𝑅𝑇

(𝑉 − 𝑏)2
+
2𝑎

𝑇𝑉3
 

 

 

Thus (
𝜕𝑃

𝜕𝑉
)
𝑇
= 0 leads to 

(
−𝑅𝑇

(𝑉 − 𝑏)2
+
2𝑎

𝑇𝑉3
) = 0 ⇒

2𝑅𝑇2

(𝑉 − 𝑏)2
=
4𝑎

𝑉3
      eq(2) 

 

 

(
𝜕2𝑃

𝜕𝑉2
)
𝑇

= (
2𝑅𝑇

(𝑉 − 𝑏)3
−
6𝑎

𝑇𝑉4
) 

 

And (
𝜕2𝑃

𝜕𝑉2
)
𝑇
= 0 leads to 

(
2𝑅𝑇

(𝑉 − 𝑏)3
−
6𝑎

𝑇𝑉4
) = 0 ⇒

2𝑅𝑇2

(𝑉 − 𝑏)2
=
6𝑎(𝑉 − 𝑏)

𝑉4
       eq(3) 

 

 

Combining 2 and 3 leads to 

 
4𝑎

𝑉3
=
6𝑎(𝑉 − 𝑏)

𝑉4
⇒ 4𝑉 = 6(𝑉 − 𝑏) ⇒ 𝑉𝑐 = 3𝑏 

 

Substituting this in equation 2 gives, 

 

2𝑅𝑇2

(3𝑏 − 𝑏)2
=

4𝑎

(3𝑏)3
= 0⇒

2𝑅𝑇2

4𝑏2
=
4𝑎

27𝑏3
⇒𝑇𝑐 =

2

3
√
2

3

𝑎

𝑏𝑅
 



 

and  𝑇𝑐 =
2

3
√
2

3

𝑎

𝑏𝑅
 and 𝑉𝑐 = 3𝑏 in equation 1 gives, 

 

𝑃𝑐 =
𝑅
2
3
√2
3
𝑎
𝑏𝑅

3𝑏 − 𝑏
−

𝑎

2
3
√2
3
𝑎
𝑏𝑅
(3𝑏)2

 =
1

3𝑏
√
2

3

𝑎𝑅

𝑏
−
3𝑎

18𝑏2
√
3

2

𝑏𝑅

𝑎

=
1

3𝑏
√
2

3

𝑎𝑅

𝑏
−
9

36𝑏
√
2

3

𝑎𝑅

𝑏
=
1

12𝑏
√
2

3

𝑎𝑅

𝑏
 

Consequently, 

 

(𝑇𝑐, 𝑃𝑐 , 𝑉𝑐) = (
2

3
√
2

3

𝑎

𝑏𝑅
,
1

12𝑏
√
2

3

𝑎𝑅

𝑏
, 3𝑏) 

 

b)  

Rewrite the Berthelot equation as: 

 
𝑃𝑉

𝑅𝑇
=

1

(1 −
𝑏
𝑉)
−

𝑎

𝑅𝑇2𝑉
 

and expand the first term on the right-hand side in powers of 
1

𝑉
: 

 

𝑃𝑉

𝑅𝑇
= (1 +

𝑏

𝑉
+ (
𝑏

𝑉
)
2

+⋯) −
𝑎

𝑅𝑇2𝑉
⇒ 

 
𝑃𝑉

𝑅𝑇
= 1 + (𝑏 −

𝑎

𝑅𝑇2
)
1

𝑉
+⋯ 

 

Thus, 

𝐵(𝑇) = 𝑏 −
𝑎

𝑅𝑇2
 

 

c)  

The temperature at which the second virial coefficient is zero is called the Boyle 

temperature. 

𝐵(𝑇) = 0⇒ 𝑏 −
𝑎

𝑅𝑇2
= 0⇒ 𝑇𝑏 = √

𝑎

𝑏𝑅
 

 

At this temperature Boyle’s law (𝑃𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) approximately holds for a real gas. 

 

 

 



d) 

 

𝐵(𝑇) =
𝑁

2
∫(1 − 𝑒−𝛽𝑣(𝑟))𝑑3𝑟

=
𝑁

2
∫ 4𝜋𝑟2𝑑𝑟

𝑅
𝜅

0

+
𝑁

2
∫(1 − 𝑒𝛽 )4𝜋𝑟2𝑑𝑟

𝑅

𝑅
𝜅

+
𝑁

2
∫ 0 ∙ 4𝜋𝑟2𝑑𝑟

∞

𝑅

⇒ 

 

𝐵(𝑇)

𝑁
= 2𝜋∫ 𝑟2𝑑𝑟

𝑅
𝜅

0

+ 2𝜋(1 − 𝑒𝛽 )∫ 𝑟2𝑑𝑟

𝑅

𝑅
𝜅

+ 0

=
2𝜋

3
((
𝑅

𝜅
)
3

+ (1 − 𝑒𝛽 ) (𝑅3 − (
𝑅

𝜅
)
3

))⇒ 

 

 

𝐵(𝑇)

𝑁
=
2𝜋

3
(𝑅3 − 𝑒𝛽 (𝑅3 − (

𝑅

𝜅
)
3

)) =
2𝜋

3
𝑅3 (1−𝑒𝛽 (

𝜅3 − 1

𝜅3
)) 

 

  



PROBLEM 4 

a)  

From the solution of the 2D-wave equation: 𝜑 = 𝐴 sin 𝑘𝑥𝑥 sin 𝑘𝑦𝑦 and taking this function 

to vanish at 𝑥 = 𝑦 = 0 and at 𝑥 = 𝑦 = 𝐿 results in, 

 

𝑘𝑥 =
𝑛𝑥𝜋

𝐿
  and  𝑘𝑦 =

𝑛𝑦𝜋

𝐿
  with 𝑛𝑥 and 𝑛𝑦 non-zero positive integers. 

 

The total number of states with |�⃗� | < 𝑘 is then given by, (the area of a quarter circle 

because we have only positive integers, with radius 𝑘 divided by the area of the unit surface 

e.g. the surface of one state, in 𝑘-space). 

Γ(𝑘) =

1
4𝜋𝑘

2

(
𝜋
𝐿)
2 =

1

4

𝐿2𝑘2

𝜋
 

Converting to energy  𝑝 = √2𝑚𝐸 = ℏ𝑘 we find, 𝑘 =
√2𝑚𝐸

ℏ
 and 𝑑𝑘 =

1

2

2𝑚

ℏ√2𝑚𝐸
𝑑𝐸 

We find, 

 

Γ(𝐸) =
1

4

𝐿2𝑘2

𝜋
=
1

4

𝐿2

𝜋

2𝑚𝐸

ℏ2
=
1

2

𝐴

𝜋

𝑚𝐸

ℏ2
 

 

For fermions with spin 
1

2
 we have two spin states thus, 

 

Γ(𝐸) = 2 ×
1

2

𝐴

𝜋

𝑚𝐸

ℏ2
=
𝐴

𝜋

𝑚𝐸

ℏ2
=
𝐴𝐸

𝜎
 

 

Thus, 𝜎 =
𝜋ℏ2

𝑚
 

 

The number of states between 𝐸 + 𝑑𝐸 and 𝐸 is: 

 

𝑔(𝐸)𝑑𝐸 =  Γ(𝐸 + 𝑑𝐸) − Γ(𝐸) =
𝜕Γ

𝜕𝐸
𝑑𝐸 =

𝐴𝑑𝐸

𝜎
 

 

 

b) 

The Fermi energy is the value of the chemical potential 𝜇 at absolute zero temperature: 

 

𝐸𝐹 = 𝜇(𝑇 = 0) 
 

Total number of fermions is given by, 

 



2𝑁 = ∫ 𝑛(𝐸)

∞

0

𝑔(𝐸)𝑑𝐸 

with, 

𝑛(𝐸) =
1

𝑒𝛽(𝐸−𝜇) + 1
 

 

the mean number of fermions with energy 𝐸 (Fermi-Dirac distribution) 

 

Thus, 

2𝑁 =
𝐴

𝜎
∫

𝑑𝐸

𝑒𝛽(𝐸−𝜇) + 1

∞

0

 

 

And at 𝑇 = 0, we have 𝐸𝐹 = 𝜇(𝑇 = 0) and thus 𝑛(𝐸) = 1  if 𝐸 < 𝐸𝐹  and 𝑛(𝐸) = 0  if 
𝐸 > 𝐸𝐹. Thus, 

 

2𝑁 =
𝐴

𝜎
∫ 𝑑𝐸 =

𝐸𝐹

0

𝐴

𝜎
𝐸𝐹 ⇒ 𝐸𝐹 =

2𝑁𝜎

𝐴
 

c) 

𝑈 = ∫ 𝐸𝑛(𝐸)

∞

0

𝑔(𝐸)𝑑𝐸 =
𝐴

𝜎
∫

𝐸𝑑𝐸

𝑒𝛽(𝐸−𝜇) + 1

∞

0
𝑇=0
⇒  𝑈 =

𝐴

𝜎
∫ 𝐸𝑑𝐸 =

𝐸𝐹

0

𝐴

2𝜎
𝐸𝐹
2 = 𝑁𝐸𝐹 

 

d) 

 

For a 2D system with a fixed number of particles we have (𝑑𝑁 = 0 and 𝑑𝑉 = 𝑑𝐴) 

 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑃𝑑𝐴
𝑇→0
⇒  𝑃 = −

𝑑𝑈

𝑑𝑉
 

Using 

𝑈 = 𝑁𝐸𝐹 =
2𝑁2𝜎

𝐴
 

 

We find, 

𝑃 =
2𝑁2

𝐴2
𝜎 =

𝑁𝐸𝐹
𝐴

 

 


